Naive Bayesian Rough Sets

نویسندگان

  • Yiyu Yao
  • Bing Zhou
چکیده

A naive Bayesian classifier is a probabilistic classifier based on Bayesian decision theory with naive independence assumptions, which is often used for ranking or constructing a binary classifier. The theory of rough sets provides a ternary classification method by approximating a set into positive, negative and boundary regions based on an equivalence relation on the universe. In this paper, we propose a naive Bayesian decision-theoretic rough set model, or simply a naive Bayesian rough set (NBRS) model, to integrate these two classification techniques. The conditional probability is estimated based on the Bayes’ theorem and the naive probabilistic independence assumption. A discriminant function is defined as a monotonically increasing function of the conditional probability, which leads to analytical and computational simplifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Feature Selection Approach Based on the Bayesian Network Classifier and Rough Sets

The paper proposes a hybrid feature selection approach based on Rough sets and Bayesian network classifiers. In the approach, the classification result of a Bayesian network is used as the criterion for the optimal feature subset selection. The Bayesian network classifier used in the paper is a kind of naive Bayesian classifier. It is employed to implement classification by learning the samples...

متن کامل

Selective Augmented Bayesian Network Classifiers Based on Rough Set Theory

The naive Bayes classifier is widely used in interactive applications due to its computational efficiency, direct theoretical base, and competitive accuracy. However, its attribute independence assumption can result in sub-optimal accuracy. A number of techniques have explored simple relaxations of the attribute independence assumption in order to increase accuracy. TAN is a state-of-the-art ex...

متن کامل

A Naive Bayesian Wind Power Interval Prediction Approach Based on Rough Set Attribute Reduction and Weight Optimization

Intermittency and uncertainty pose great challenges to the large-scale integration of wind power, so research on the probabilistic interval forecasting of wind power is becoming more and more important for power system planning and operation. In this paper, a Naive Bayesian wind power prediction interval model, combining rough set (RS) theory and particle swarm optimization (PSO), is proposed t...

متن کامل

Multi-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes

This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...

متن کامل

The naive Bayes text classification algorithm based on rough set in the cloud platform

This paper improves the naïve bayesian classification algorithm , combining with the rough set theory we can get a naive bayesian classifier algorithm based on the rough set. We implement this algorithm on a cloud platform using map-reduce programming mode and get a excellent result. A recall rate of 76.4 was achieved when classifying Tibetan Web pages .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010